- Abelian theorem
- абелева теорема
English-Russian Dictionary on Probability, Statistics, and Combinatorics. — Philadelphia and Moscow. Society for Industrial and Applied Mathematics and TVP Science Publishers. K. A. Borovkov. 1994.
English-Russian Dictionary on Probability, Statistics, and Combinatorics. — Philadelphia and Moscow. Society for Industrial and Applied Mathematics and TVP Science Publishers. K. A. Borovkov. 1994.
Abelian and tauberian theorems — In mathematics, abelian and tauberian theorems relate to the meaningful assignment of a value as the sum of a class of divergent series. A large number of methods have been proposed for the summation of such series, generally taking the form of… … Wikipedia
Abelian group — For other uses, see Abelian (disambiguation). Abelian group is also an archaic name for the symplectic group Concepts in group theory category of groups subgroups, normal subgroups group homomorphisms, kernel, image, quotient direct product,… … Wikipedia
Abelian von Neumann algebra — In functional analysis, an Abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute. The prototypical example of an abelian von Neumann algebra is the algebra L^infty(X,mu) for μ a σ… … Wikipedia
Abelian variety — In mathematics, particularly in algebraic geometry, complex analysis and number theory, an Abelian variety is a projective algebraic variety that is at the same time an algebraic group, i.e., has a group law that can be defined by regular… … Wikipedia
Abelian category — In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototype example of an abelian category is the category of… … Wikipedia
Abelian extension — In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is a cyclic group, we have a cyclic extension. More generally, a Galois extension is called solvable if its Galois group is… … Wikipedia
Theorem of the cube — In mathematics, the theorem of the cube is a foundational result in the algebraic geometry of a complete variety. It was a principle discovered, in the context of linear equivalence, by the Italian school of algebraic geometry. The specific… … Wikipedia
Focal subgroup theorem — In abstract algebra, the focal subgroup theorem describes the fusion of elements in a Sylow subgroup of a finite group. The focal subgroup theorem was introduced in (Higman 1958) and is the first major application of the transfer according to… … Wikipedia
Finitely-generated abelian group — In abstract algebra, an abelian group (G,+) is called finitely generated if there exist finitely many elements x1,...,xs in G such that every x in G can be written in the form x = n1x1 + n2x2 + ... + nsxs with integers n1,...,ns. In this case, we … Wikipedia
Finitely generated abelian group — In abstract algebra, an abelian group ( G ,+) is called finitely generated if there exist finitely many elements x 1,..., x s in G such that every x in G can be written in the form : x = n 1 x 1 + n 2 x 2 + ... + n s x s with integers n 1,..., n… … Wikipedia
Feit–Thompson theorem — In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson (1962, 1963) Contents 1 History 2 Significance of the proof … Wikipedia